Триггеры: RS, JK, D, T, принцип действия, видео, практическое приминение

Подписаться

Что такое триггеры?

Триггер (от английского “тrigger” ) – цифровое устройство, которое может иметь всего два (0 или 1) устойчивых состояния. При этом переход из одного состояния в другое осуществляется максимально быстро, временем переходным процессов на практике принято пренебрегать. Триггеры – это основной элемент для построения различных запоминающих устройств. Их можно использоваться для хранения информации, но объем их память чрезвычайно мал – триггер может хранить биты, отдельные коды или сигналы.

Рис. 1. JK-триггер

Триггеры способны сохранять свою память только при наличии питающего напряжения. Именно по этому их принято относить к оперативной памяти. Если выключить питающее напряжение и затем его снова включить, триггер переходит в случайное состояние – он может иметь на выходе как логический ноль, так и логическую единицу. Именно поэтому, проводя проектирование схем, надо обязательно предусмотреть вопрос приведения триггера в начальное («стартовое») состояние, исход из которого и проводится дальнейший расчет.

В основу построения любого триггера  положена схема, которая состоит из двух логических (И-НЕ или ИЛИ-НЕ), которые охватываются обратной положительной связью. В результате такого подключения схема может пребывать исключительно в одном (из двух возможных) устойчивых состояний. При этом в этом состоянии, если не приходят другие управляющие сигналы, схема может находиться по времени практически без ограничений – пока есть питающее напряжение.

На рисунке ниже приводится пример подобной схемы – триггерной ячейки, созданной на основе 2 элементов И-НЕ

Рис.2. Пример схемы триггерной ячейки

Как видно, схема имеет 2 инверсных входа: сброс – обозначен на схеме R (сокращение от англ. Reset) и установка – обозначен S (сокращенно от Set), а так же два выхода: прямой, обозначенный Q и инверсный, обозначенный как – Q. Для правильной и стабильной работы триггерной ячейки должно соблюдаться одно правило – на ее входы не могут поступать одновременно отрицательные импульсы. Когда на вход –R поступает импульс при единичном сигнале на входе -S, выход переходит в состояние единицы (1), выход Q - нулевым. По обратной связи сигнал с Q (то есть 0) подается на второй вход в нижнем элементе. Поэтому и при прекращении поступления сигнала на входе  – R (подан 0) состояние сигналов на выходах не изменяется – Q (0) и – Q (1). Итак, что подаче импульсов на вход –R состояние на выходе меняться не будет – схема находится в устойчивом состоянии. Такое же состояние система примет, если на – R подать 1, а на вход – S – 0. В этом случае на выходе Q будет единица, на - Q —  нуль, и вне зависимости от подачи импульсов на входе – S система будет в устойчивом состоянии. 

Если на два входа одновременно подать сигналы, то в течении их действия на каждом выходе будет единичный сигнал. После прекращения подачи входных импульсов выходы произвольно перейдут в любое из двух устойчивых состояний. Аналогично, при включении тригерной ячейки, она случайным образом выберет одно из устойчивых положений.

Таблица истинности для этой триггерной ячейки приведена ниже:

 
Рис. 3

Число входов у триггера определяется его структурой и выполняемыми функциями. По тому, как информация записывается в триггер, они делятся на:

  • асинхронные – информация записывается непрерывно и зависит от информационных сигналов, которые подаются на вход триггера
  • синхронные – информация записывается только при наличии дополнительного сигнала – синхронизирующего, фактически – открывающего работу триггера

В цифровой схемотехнике используют такие обозначения для входов триггера:
S – раздельный вход, устанавливающий триггер в единичное состояние (на Q (прямом выходе) единица )
R - раздельный вход, устанавливающий триггер в нулевое состояние (на Q (прямом выходе) ноль )
С – вход синхронизации
D – информационный вход (на этот вход подается информация для дальнейшего занесения её в триггер)
Т - счетный вход

Исходя из функционального назначения, триггеры классифицируют:

  • RS-триггеры
  • D-триггеры
  • Т-тригеры
  • JK-триггер

RS-триггер

Простейший тип триггеров, на основе которого в дальнейшем создаются другие типы. Он может быть построен как на логических элементах 2ИЛИ-НЕ (прямые входы) или 2И-НЕ (инверсные входы)

 

Рис. 4. RS-триггер, схема построения и обозначение. А – на элементах ИЛИ-НЕ. Б – на элементах И-НЕ

Самостоятельно, из-за очень низкой помехоустойчивости, в цифровой технике RS-триггеры практически не используются. Исключение – устранение влияния дребезжания контактов, возникающее при коммутации механических переключателей. В этом случае потребуется тумблер (кнопка), имеющий три вывода, при этом один из выводов подключается попеременно к двум остальным. Для получения RS-триггера используют D-триггер, у которого входы D и C замкнуты на «ноль». 

Принцип работы приведен на временной диаграмме:

Рис.5. Схема устранения влияния дребезжания контактов

Первым отрицательный сигнал, поступивший на вход –R переводит триггер в «0»-состояние, а первый отрицательный сигнал на на входе –S перебрасывает триггер в состояние единицы. Все остальные сигналы, которые вызваны дребезгом контактов, уже не смогут никак повлиять на триггер. При данной схеме подключения переключателя его верхнее положение будет соответствовать единице на выходе триггера, нижнее – нулю. 

Рис. 6. RS-триггер (микросхема 155ТМ2)

RS-триггер – асинхронный, но возникают случаи, когда есть необходимость зафиксировать (сохранить) записанную информацию. Для этого используют синхронный (синхронизируемый) RS-триггер, который в этом случае состоит из двух частей: обычного RS-триггера и схемы управления.

Рис.7. Синхронизируемый RS-триггер

При такой схеме, пока на входе С=0, значение импульсов, поступающих на Х1 и Х2 не имеет значение, RS-триггер находится в режиме «хранение». При С=1 триггер активизируется и переходит в режим записи. Временная диаграмма представлена на рисунке ниже:

Рис. 8

Подробнее о RS-триггере смотрите на видео:

D-триггеры

Триггер задержки, который используют для создания регистров сдвига и регистров хранения, неотъемлемая часть любого микропроцессора.

Рис. 9. Схема D-тригера

Имеет два входа – информационный и синхронизации. При состоянии С=0 тригер устойчив и при этом сигнал на выходе не зависит от сигналов, поступающих на информационный вход. При С=1 на прямом выходе информация будет точно повторять ту информацию, которая подается на вход D. На временной диаграмме приведен принцип работы D-триггера

Рис.10.  D-триггер. а) схематическое изображение б) временная диаграмма работы

Таблица истинности D-триггера:

Рис. 11

D-триггер, принцип работы и особенности применения рассмотрены на видео:

JK-триггер

По принципу работы JK-триггер практически полностью соответствует RS-триггеру, но при этом удалось избежать неопределенности, вызванной при одновременном поступлении на вход двух «единиц».

Рис. 12. Графическое изображение JK-триггера

Рис.13. JK-триггер на входе с логикой 3И

 В этом случае JK-триггер переходит в режим счетного триггера. На практике это приводит к тому, что при одновременном поступлении на вход «единичных» сигналов, триггер меняет свое состояние – на противоположное. Ниже приводится таблица истинности для JK-триггера:

Рис.14

JK триггеры – очень универсальные устройства, при этом их универсальность носит двойной характер. С одной стороны, эти триггеры успешно используются для цифровых устройствах, так сказать, в чистом виде: в цифровых счетчиках, регистрах, делителях частоты и т.д. С другой стороны – очень легко из JK-триггера, соединив определенные выводы, получить любой необходимый тип триггера. Ниже приводится пример получения D – триггера из исходного JK – триггера, задействовав дополнительный инвертор

Рис. 15. Схема получения D – триггера из исходного JK

Особенности работы JK – триггера рассмотрены на видео:

Т-триггер

Другое название – счетные триггеры, на основе которых создают двоичные счетчики и делители частоты. Триггеры такого типа имеют только один вход. Принцип его работы – когда импульс поступает на вход тригерра, его состояние меняется на противоположное, при поступлении второго импульса – возвращается в исходное.

Ниже приведена временная диаграмма работы Т-триггера

Рис. 16. Временная диаграмма делителя частоты на основе Т-триггера

Из неё становится понятно, почему Т-тригер называют делителем частоты. Переключение триггера происходит в момент, когда на вход поступает передний фронт синхроимпульса. В результате частота, с которой следуют импульсы на выходе триггера, оказывается в 2 раза меньше исходной – частоты синхроимпульсов, поступающих на вход. Если установка одного счетного триггера позволяет частоту импульсов разделить на два, то два последовательно подключенных триггера, соответственно, уменьшат эту частоту в 4 раза.
Ниже приведен пример получения Т-тригерра из JK-триггера:

Рис. 17. Т-тригер на основе JK-триггера

Практическое использование триггера

Получив общее представление, что такое триггеры, рассмотрим некоторые примеры их практического использования. Один пример – устранение дребезга контактов с использованием RS-триггера рассмотрен выше.

Одна из основных функций, для выполнения которых активно используются триггеры – формирование сигнала, у которого длительность соответствует длительности какого-либо выполняемого процесса (операции) в схеме. Выходной сигнал играет двойственную роль:

  • служит сигналом, разрешающим начало операции (процесса)
  • служит информирующим сигналом для других узлов (устройств) о том, что операция (процесс) начались. Такую функцию триггера принято называть «флагом процеса».

  Выходной сигнал триггера при этом может разрешать этот самый процесс, а может информировать остальные узлы устройства о том, что процесс идет (или, как говорят, служить флагом процесса). На схеме ниже приведен пример подобной работы

 

 

Рис.18.  Триггер в качестве флага процесса

В момент прихода сигнала «Старт» происходит перебрасывание триггера в «единичное» состояние – операция (процесс) запущены. С приходом сигнала «Стоп» триггер переходит в «0»-состояние, процесс прекращается.

Простейший вариант – это использование входов -S и –R, но при этом всегда остается вероятность возникновения ситуации неопределенности при одновременном приходе сигналов на оба входа. Чтобы избежать этого, на практике задействуют пары входов С и –S или –R и С. При использования пары входов –R и С надо подать на D единицу, при задействовании пары С и –S на вход D подается нуль. Универсальность и удобство такого решения еще и в том, что в роли сигналов «Стоп» и «Старт» может использоваться не только уровень сигнала, но и его фронт.

Ещё одна область, в которой триггеры получили самое широкое распространение – синхронизация сигналов. Например, с помощью триггера очень просто избавляются от коротких паразитных импульсов, которые возникают на выходе комбинационной схемы, если несколько входных сигналов изменяются практически одновременно.

Рис. 19. Схема синхронизации с помощью триггера

В данном случае для синхронизации необходим синхропереход (синхросигнал), который сопровождает информационные входные сигналы (или входной код) и который задержан на время tз (его значение больше значения задержки для всей комбинационной схемы) относительно момента, когда началось изменение входных сигналов. Когда синхросигнал подается в триггере на вход С, а выходной сигнал этой комбинационной схемы – на вход D этого же триггера, то сигнал на выходе триггера (обозначен на графике Вых. 2) будет полностью свободен от наличия паразитных импульсов.

При разработке цифровых схем, чья работа синхронизируются единым тактовым генератором, очень часто возникает проблема синхронизации работающей схемы и поступающего на неё внешнего сигнала. То есть необходимо обеспечить изменение этого внешнего (по отношению к тактовому сигналу в схеме - асинхронного) сигнала так, чтобы в результате менялся в соответствии с тактами задающего (тактового) генератора. Другими слова – этот сигнал из асинхронного должен стать синхронным для всей работающей схемы, в которую он поступает. Эта задача решается путем установки триггера.

Самый простой вариант – внешний сигнал осуществляет разрешение/запрет на прохождения сигнала, генерируемого непрерывно работающим тактовым генератором. Самое простое решение, особенно если идет речь о RC-генераторе – просто отключать и запускать генератор в необходимое время. Но такая простота – кажущаяся. Прежде всего, нельзя включить генератор мгновенно – ему потребуется время для возбуждения, да и качество и форма генерируемого сигнала в начале будет отличаться от необходимого. Особенно ярко это проявляется с кварцевыми генераторами, останавливать и запускать которые не рекомендуется – после возобновления работы генератор возобновляет генерирование сигнала с задержкой, которая может равняться до 5 периодов тактовой частоты. При этом при каждом включении задержка будет разной. Кроме того, не всегда есть возможность прекращать работу тактового (задающего) генератора, особенно, когда от его работы напрямую зависит функционирование всей схемы.

Поэтому для упрощения считают, что тактовый генератор функционирует непрерывно, а внешний управляющий сигнал  будет отвечать за прохождение/блокирование сгенерированных импульсов.

  

Рис. 20. Схема синхронизации сигнала разрешения

Простейшее решение – организовать запрещение или пропускание импульсов, сгенерированных тактовым генератором, с использованием логического элемента 2И (на рис. вариант а). Но при этом велика вероятность того, что на выход системы будут проходить обрезанные (неполной длительности) импульсы, включая предельно короткие. Эти искаженные импульсы могут дестабилизировать работу системы в целом, внеся неопределенность в функционирование элементов.

Синхронизирующий триггер (вариант б на рис. ) обеспечит на выходе пропускающего элемента 2И только «целые» импульсы, имеющие полную длительность. Проходящий через триггер разрешающий сигнал, тактирующийся разрешаемым сигналом, синхронизируется в результате с тактовым сигналом, что гарантирует появление на выходе исключительно целого числа тактовых импульсов и целого числа периодов, задаваемых тактовым генератором.

Используя триггеры, можно создать линию задержки для цифровых сигналов. Для этого несколько триггеров (они обязательно должны тактироваться общим тактовым сигналом С) необходимо соединить в одну цепь последовательно. Такое включение позволит обрабатывать одновременно комбинационными схемами сразу несколько последовательных (по времени) состояний одного сигнала.

Что такое триггеры и где они применяются рассмотрено на видео:

+
3
-
9 Октября 2014, 11:11